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Symmetric framelets

Alexander Petukhov�

June ��� ����

Abstract

We study tight wavelet frames associated with symmetric compactly supported re�

�nable functions� which are obtained with the unitary extension principle� We give

a criterion for existence of two symmetric or antisymmetric compactly supported

framelets�

All re�nable masks of length up to �� satisfying this criterion� are found�
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� Introduction

The main goal of our paper is to present a criterion for existance of two symmetric or
antisymmetric framelets generated by a symmetric re�nable function� We consider only
functions of one variable in the space L��R� with the inner product

hf� gi �
Z
�

��

f�x�g�x� dx�

As usual we denote by �f ��� Fourier transform of the function f�x� � L��R��

�f��� �

Z �

��

f�x�e�ix� dx�

Suppose a real�valued function � � L��R� satis�es the following conditions�
�a� ���	�� � m���� ������ where m� is an essentially bounded 	��periodic function

�b� lim��� ����� � �	������


then the function � is called re�nable or scaling� m� is called a symbol of �� and the relation
in item �a� is called a re�nement equation�

�This research was partially supported under Grants NSF KDI ���AO��� DoD�N��������������	�
ONR
ARO�DEPSCoR�DAAG������������� and by Russian Foundation for Basic Research under Grant
����������	�
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Every re�nable function generates multiresolution analysis �MRA� of the space L��R��
i�e�� a nested sequence

� � � � V �� � V � � V � � � � � � V j � � � �

of closed linear subspaces of L��R� such that
�a� �j�ZV

j � �


�b� �j�ZV j � L��R�

�c� f�x� � V j � f�	x� � V j�� �

To obtain the MRA we just have to take as above V j the closure of the linear span of the
functions f��	jx � n�gn�Z� Ful�llment of item �a� and �b� for the obtained spaces V j was
proved in ��� Property �c� is evident�

The most popular approach to the design of orthogonal and bi�orthogonal wavelets is
based on construction of MRA of the space L��R�� generated with a given re�nable function�
S�Mallat �� showed that if the system f��x�n�gn�Zconstitutes a Riesz basis of the space V ��
then there exists a re�nable function � � V � with a symbolm� such that the functions f��x�
n�gn�Zform an orthonormal basis of V �� If we denote by W j the orthogonal complement of
the space V j in the space V j��� then the function � �which is called a wavelet�� de�ned by
the relation

���	�� �� m����������

where m���� � ei�m��� � ��� generates orthonormal basis f��x� n�gn�Zof the space W ��
Thus� the system �

	k����	kx� n�
�
n�k�Z

���

constitutes an orthonormal basis of the space L��R��
We see that if we have a re�nable function� generating a Riesz basis� then we have explicit

formulae for the wavelets� associated with this functions� It gives a simple method for
constructing wavelets� Generally speaking� any orthonormal basis of L��R� of the form ��� is
called a wavelet system� However� wavelet construction based on a multiresolution structure
has the advantage from the point of view e�ectiveness of computational algorithms� because
it leads to the pyramidal scheme of wavelet decomposition and reconstruction �sf� ����

It is well�known that the problem of �nding orthonormal wavelet bases� generated by a
scaling function� can be reduced to solving the matrix equation

M���M���� � I� �	�

where

M��� �

�
m���� m����

m��� � �� m��� � ��

�
�

m�����m���� are essentially bounded functions� and m����� � m����� i�e�� the Fourier series
of these functions have real coe�cients� It is known �see ��� that for any scaling function
��x� and associated wavelet ��x�� generating an orthogonal wavelet basis� the corresponding
symbols m�����m���� satisfy �	�� Any re�nable function �� whose symbol m� is solution
to �	�� generates a tight frame �see �� for the case when m� is polynomial� and �	 for the
general case��

	



Let us recall that a frame in a Hilbert space H is a family of its elements ffkgk�Zsuch
that for any f � H

Akfk� �
X
k�Z

jhf� fkij� � Bkfk��

where optimal A and B are called frame constants� If A � B� the frame is called a tight
frame� In the case when a tight frame has unit frame constants �for example� if it is an
orthonormal basis� for any function f � L��R� the expansion

f �
X
n�Z

hfn� fifn ���

is valid�
The frame

�f�l
j�kgj�k�Z

�n
l��

� where �l
j�k�x� � 	j���l�	jx� k�� generated by translates and

dilations of �nite number of functions� is called an a�ne or wavelet frame�
In the case when the symbol m� of a re�nable function � does not satisfy the equation

jm����j� � jm��� � ��j� � ��

we cannot construct an orthonormal bases of V � of the form f��x� k�� ��x� k�g� However�
we can hope that there exists a collection of several framelets ��� ��� � � � � �n � V �� satisfying
the following conditions�

�� the functions
�f�l

j�kgj�k�Z
�n
l��

form a tight frame of the space L��R�

	� for algorithms of decomposition and reconstruction the recurrent formulae

h�j�k� fi � cj�l �
X
k�Z

cj���k�hk��l� h�g
j�k� fi � dqj�l �

X
k�Z

cj���k�g
q
k��l� � � q � n� ���

and

cj���l �
X
k�Z

cj�khl�k �
nX

q��

X
k�Z

dqj�kg
q
l�k� ���

where gqk are coe�cients of the expansions

m���� � 	����
X
k�Z

hke
�ik�� mq��� � 	����

X
k�Z

gqke
�ik��

take place�
Let � be a re�nable function with a symbol m�� ��k��� � mk���	� �����	� � V �� where

each symbol mk is a 	��periodic and essentially bounded function for k � �� 	� � � � � n� It is
well�known that for constructing tight frames with property 	� the matrix

M��� �

�
m���� m���� � � � mn���
m��� � �� m��� � �� � � � mn�� � ��

�
�

plays an important role� It is easy to see that the equality

M���M���� � I ���

is equivalent to ��� and ����
In our recent paper the following theorems were proved

�



Theorem A ������ If ��� holds� then the functions f�jgkj�� generate a tight frame of L��R��

Remark� For n � � this theorem was proved in �	� For an arbitrary n it was proved in ��
under some additional decay assumption for ��� In �� this and the next theorem was proved
for a special case when m� is a trigonometric polynomial� In �� Theorem A was called the
unitary extension principle�

Theorem B ������ Equation ��� has a solution if and only if

jm����j� � jm��� � ��j� � � �a� e��� ���

Thus� the problem of constructing tight frames� generated by a re�nable function� can
be reduced to �nding mk� satisfying ���� It is clear that relation ��� can be re�written in the
form

M ��� ��M����M�

���� �

�
� � jm����j� �m����m��� � ��

�m����m��� � �� �� jm��� � ��j�
�
� ���

where

M���� �

�
m���� m���� � � � mn���
m��� � �� m��� � �� � � � mn�� � ��

�
�

Let us introduce the diagonal matrix ���� with eigenvalues of the matrix M ��� on the
diagonal and the matrix P ��� whose columns are the corresponding eigenvectors� Then

���� �

�
� �
� � � jm����j� � jm��� � ��j�

�
�

For those � for which

B���B��� �� jm����j� � jm��� � ��j� �� �

we de�ne the matrix P ��� in the form

P ��� �

�
BBB�
�
ei�m��� � ��

B���

�
m����

B���

�
�
ei�m����

B���

�
m��� � ��

B���

�
CCCA �

where B��� is a ��periodic function� At points� where B��� � �� we de�ne the matrix P ���
as the identity matrix�

Thus� we have

M ��� � P �������P ����� ���

Now we can discribe all possible solutions to ����

�



Theorem C ������ Let a 	��periodic function m���� satisfy ���� Then there exists a pair
of 	��periodic measurable functions m�� m� which satisfy ��� for n � 	� Any solution of ���
can be represented in the form of the �rst row of the matrix

M���� � P ���D���Q���� ����

where D��� is a diagonal matrix� D���D��� � ����� Q�w� is an arbitrary unitary �a�e��
matrix with ��periodic measurable components�

Remark� To describe all possible solution to ��� for an arbitrary n we have to take an
arbitrary n 	 n unitary matrix Q with ��periodic elements and a 	 	 n matrix D� which is
extension of the matrix D��� by mean of �lling all new columns with zeros�

Theorem D ������ Let a trigonometric polynomial m���� of degree n satisfy ���� Then
there exists a pair of trigonometric polynomials m�� m� of the degree at most n satisfying
����

Remark� In �� this theorem was proved without the guaranteed degree of the polynomials
m�� m��

Let now and in what follows a function m���� satisfy the condition

m���� � eil�m����� l �Z� ����

then the corresponding re�nable function ��x� are even after appropriate whole integer �l is
even� or half integer �l is odd� shift of an argument� We shall call such funcions and their
symbols symmetric� From here on without loss of generality we suppose l � �� ��

We call antisymmetric those functions which after an appropriate whole or half shift
are odd� We are interested in framelets �k� which are either symmetric or antisymmetric�
Symbols of antisymmetric framelets satisfy the relation

mk��� � �eil�mk���� l �Z� ��	�

In applications such systems are of great practical importance� The numerical algorithms
for them have low computational complexity� And the problem of signal edges is solved very
easily by means of even or odd extension�

The natural question about possibility to choose �anti�symmetric framelets for a given
symmetric re�nable function � arises� In the recent paper �� positive answer this question
was given�

Theorem E ������ For any re�nable function � with a polynomial symbol m� there are 	
�anti�symmetric functions m�� m�� m�� providing a solution to ����

However� many examples� when system ��� can be solved with 	 �anti�symmetric framelets�
are known� For instance this is possible for the cases of piecewise�linear ���� and piecewise�
quadratic ���� B�splines� Our goal is to present a criterion for existence of 	 �anti�symmetric
framelets�

�



� Main result

First� we introduce necessary de�nitions and notation�
The degree of a trigonometric polynomial

Pk
j�l ake

ijx� where al �� � and ak �� �� is de�ned
to be k � l�

We denote by L a set of all Laurent polynomials with real coe�cients� and by Ln a set
of Laurent polynomials with real coe�cients of degree at most n� i�e��

Ln ��

�
kX
j�l

ajz
j
��� l� k �Z
 aj � R
 � � k � l � n

	
�

We denote by deg�f� the degree of the Laurent polynomial f �
In what follows Laurent polynomials hk�z� are speci�ed by the z�transform of the symbols

mk���� i�e�� hk�e
i�� �� mk����

Theorem �� Let h��z� is a symmetric Laurent polynomial of degree n� satisfying ���� Then
two �anti�symmetric solutions to ��� exist if and only if all roots of the Laurent polynomial

h�z� �� � � h��z�h����z� � h���z�h�����z� ����

have even multiplicity� Moreover� in this case polynomials m�� m� of degree at most n can
be chosen�

This theorem has a simple consequence for B�spline multiresolutions� Let us recall that
B�splines is de�ned to be

B��x� ��



�� x � ��� ��
�� x �� ��� �


Bn�� �� Bn 
B��

Corollary �� For the re�nable functions Bn two �anty��symmetric solutions exist for n �
�� �� 	� � and do not exist for n � �� �� �� �� �� � � � � ���

This corollary was obtained by direct computation of roots of the corresponding polyno�
mials with Matlab�

Remark� For n � � we have Haar�s wavelets� The solution for n � � was found by A�Ron
and Z�Shen �� and the solution for n � 	 was found by C�Chui and W�He ��� We consider
the case n � � in Section ��

A symbol h��z� � ��	 �
PN

n�� an�z
��n�� � z�n����

PN
n�� an � ��� is called interpolatory�

Corollary �� An interpolatory symbol h� admit �anti�symmetric solutions to ��� if and only
if h��z� � �z���N � 	 � z�N������

Remark It is clear that only for N � � we have a real interpolatory re�nable function�
satisfying the condition ���� � �� ��n� � �� n �Z� n �� ��

�



� Proof of main result

��� Necessity

We assume that the polynomials m��m��m� provide a solution to ���� m� is symmetric and
m�� m� are either symmetric or antisymmetric� Let us introduce a matrix N�z� which is
z�transform of the matrix M���� Then equation ��� can be rewritten in the form

N�z�NT ���z� � I�

Obviuously we can extend the rectangular matrix up to a �	 � para�unitary matrix

N ��z� �

�
� h��z� h��z� h��z�

h���z� h���z� h���z�
a��z�� a��z

�� a��z��

�
A � N ��z�N �T ���z� � I�

The new row can be obtained as a vector product of the known rows� It guarantees that
ai�z� � L� We note that any other possible polynomial choices of the last row di�er from
this one by the factor �zk� k � Z� We used the factor z so that elements of the last row
depend only on even powers� Thus� we have

a��z
�� � z�h����z�h�����z�� h����z�h�����z��� ����

We denote by S the set of all �anti�symmetric polynomials� We shall use the subscripts
e� o� w� h to denote subsets of S� consisting of respectively even� odd� whole and half
symmetric polynomials of S and integer superscripts to denote a value k in the relation
f���z� � z�kf�z�� For instance� S�

w�o is the set of polynomial which are odd at a whole point
and for any f � S�

w�o we have f���z� � z��f�z�� Of course subscripts w and h is compatible
correspondingly only with even and odd superscripts�

Let us prove that a� � S� This is enough to prove the necessity� Indeed� since we have
the identity

h��z�h����z� � h���z�h�����z� � a��z
��a����z

�� � ��

then the symmetry of a� implies that all non�zero roots of the polynomial

� � h��z�h����z�� h���z�h�����z� � a��z
��a����z

�� � �z�ka���z�� ����

have even multiplicity� First� we note that polynomials from S satisfy the followng obvious
properties�

�a�� f� g � S  fg � S

�a	� f� g � Se  fg � Se

�a�� f� g � So  fg � Se

�a�� f � So� g � Se  fg � So

�a�� f� g � Sw  fg � Sw

�a�� f� g � Sh  fg � Sw

�a�� f � Sw� g � Sh  fg � Sh

�b�� f�x� � Sw � f��x�� f���x� � Sw

�b	� f�x� � So � f���x� � So


�



�b�� f�x� � Sh�e � f��x� � Sh�o

�b�� f�x� � Sw�e �f�x� � Sw�o� � f��x� � Sh�e �f�x� � Sw�o�

�c� f � Sw  f�x�� f��x� � S�
Now we consider the case h� � Sw� Taking into account �a� � �c�� and ����� we obtain

that the symmetry of a� may be violated only if h��z�h���z� � Sh� In this case h� and h�
belong to di�erent classes Sw and Sh� We suppose that h� � Sw� h� � Sh�

Because of the orthogonality of the �st and the 	nd rows of the matrix N ��z�� we have

h��z�h�����z� � h��z�h�����z� � h��z�h�����z� � �� ����

We see that� according to properties �a	�� �b��� �c�� the �st and the 	nd summands in ����
belong to Se� whereas� by �a�� and �b	�� the �rd one belongs to So� It means h��z� � ��
Hence� we have a� � a� � �� a��z� � zk� Thus� we come to the case of one framelet� Of
course this is impossible for h� � Sw �sf� ��� Chapter ��� though ���� gives us a permissible
function a��z� � ��

We note that by the same reasons h�� h� � Sw� Actually� if h�� h� � Sh� then the �st term
in ���� is even whereas the 	nd the �rd ones are odd� It means that h��z�h����z� � ��

Moreover� it is easy to prove that h� � Se� h� � So or vise versa� The point is that for
the functions h�� h� with the same evenness� by ����� we get an even polynomial a�� Thus�
the polynomial a��z��a����z�� has positive coe�tients of the lowest and the highest powers�
whereas the corresponding coe�cients of the left�hand part of ���� are negative�

Now if we suppose h� � Sh� in analogous way we obtain that the both functions h� and
h� belong to Sh� Indeed� since the �st term in ���� is odd then two other terms are odd�
Hence� h�� h� � Sh� Easily to see that the case h�� h� � Sh�e is not valid� It contradicts to
the equality

h��z�h����z� � h��z�h����z� � h��z�h����z� � �

due to the positivity of coe�cients of the lowest and the highest powers of all terms� From����
and �b�� we have a� � So for h�� h� � So and a� � Se for h� � Se� h� � So�

Thus� we have � permissible cases�
�� h� � Sw� h� � Sw�e� h� � Sw�o

	� h� � Sh� h� � Sh�o� h� � Sh�o

	� h� � Sh� h� � Sh�e� h� � Sh�o�

Examples for all of them will be given in Section ��

��� Su�ciency

We assume that m���� is a trigonometric polynomial� then B��� � jm����j� � jm��� � ��j�
and A��� � � � jm����j� � jm��� � ��j� are also non�negative trigonometric polynomials
So according to Riesz lemma� we can take ��periodic polynimials A��� and B��� such that
jA���j� � A���� jB���j� � B���� Since h�z� is a symmetric polynomial of even power and its
roots have even multiplicity� we can take an �anti�symmetric polynomial A���� The choice of
a� is not unique� in what follows we suppose for de�niteness that either a� � S�

w or a� � S�
h�

We assume that the choice of matrices P ��� and D��� in Theorem C corresponds the last
assumptions�

Our further proof repeats for the most part reasoning from ���

�



In fact� we cannot control the choice of the matrices P ��� andD��� in ����� So we need to
choose a unitary rational ��periodic matrix Q��� such that M���� consists of trigonometric
polynomials�

Let us apply z�transform to ����� In what follows we consider the Laurent polynomials
b�e�i�� � B���� a��e�i�� � A���� After the same change of variable the matrix P ��� becomes

H�z� �

�
BBBBBB�

�

z
h�

�
��

z

�
b���z��

h��z�

b�z��

�
�

z
h�

�
�

z

�
b���z��

h���z�
b�z��

�
CCCCCCA
�

We put the last representation of the matrix H�z� through procedure of reduction� If poly�
nomials h��z�� h���z�� b�z�� are divisible by z � z�� that in view of the symmetry of h�z�
they are also divisible by z � z�� Obviously� since h���� �� �� then z� �� ��� We cancel the
fractions of H�z� by ���z�� z����z

�� z���� After all possible cancellations we obtain the same
matrix H ��z� � H�z� but its elements are expressed in terms of new functions h���z� and
b��z�� It is clear that b��z��b����z��� � h���z�h

�
����z��h����z�h������z� and numerators of the

matrix H ��z� do not vanish simultaneously� Indeed� since the determinant of H�z� is equal
to ��z� if for some z� we have h��z�� � h���z�� � h����z�� � h�����z�� � �� then either
b�z��� � � or b���z��� � �� It means that the reduction of H�z� can be continued� We note
that because the coe�cients of h��z� and b�z� are real� the polynomials h���z� and b��z� also
have real coe�cients� Moreover� h���z� is symmetric�

After taking z�transform the elements q���z��� q���z��� q���z��� q���z�� of the matrix Q���
satisfy the relations

q���z� � q�����z�z
N � q���z� � �q�����z�zN � N �Z�

Here� without loss of generality� we may suppose N � �� because any other choice leads to
the integer shift of one of the basic framelets�

To reduce poles of the matrix H ��z� after multiplication by Q��� we suppose that

q���z� �
g��z�

b��z�
� q���z� �

g��z�

b����z�
�

where g�� g� are Laurent polynomials�
LetR � f�z��� ��z��� � � � � ��z��n g be a set of all di�erent roots of the polynomial b��z��b����z���

We denote by kj the multiplicity of the root zj� It is clear that all four roots �z��j have the
same multiplicity� So the degree of polynomial b��z��b����z�� is equal to �

P
kj � �k� where

k is the degree of polynomial b��
To prove the theorem we need to �nd polynomials g�� g� which satisfy equations

�

z
h��

�
��

z

�
g��z

�� � a��z
��h���z�g��z

�� � b��z��b����z��f��z�
 ����

�



��

z
h��

�
��

z

�
g�

�
�

z�

�
� a��z

��h���z�g�

�
�

z�

�
� b��z��b����z��f��z�
 ����

��

z
h��

�
�

z

�
g��z

�� � a��z
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where f�� f�� f�� f� � L� Moreover� we need to satisfy the condition of the unitarity of the
matrix Q���� Hence�

g��z�g����z� � g��z�g����z� � b��z�b����z�� �	��

Now we leave aside equation �	�� and prove the existence of polynomials g�� g� � Lk�
satisfying ���� � �	��� First we choose templates for the polynomials g� and g�� There are �	
di�erent cases which depend on type of symmetry of the polynomials h�� a�� and on evenness
of the number k� They can be classi�ed into three groups with � cases in every group�
�� h� � Sw� a� is odd�

�a� a� � S�
h�o� k is odd� g� � S�

h�e� g� � S��h�e� deg�g�� � deg�g�� � k


�b� a� � S�
w�o� k is odd� g� � S�

w�o� g� � S��h�e� deg�g�� � k � �� deg�g�� � k

�c� a� � S�

h�o� k is even� g� � S�
w�e� g� � S�

w�o� deg�g�� � deg�g�� � k

�d� a� � S�

w�o� k is even� g� � S�
h�o� g� � S�

w�e� deg�g�� � deg�g�� � k

	� h� � Sh� a� is odd�

�a� a� � S�
h�o� k is odd� g� � S�

w�e� g� � S��h�e� deg�g�� � k � �� deg�g�� � k


�b� a� � S�
w�o� k is odd� g� � S�

h�e� g� � S��h�e� deg�g�� � deg�g�� � k

�c� a� � S�

h�o� k is even� g� � S�
h�e� g� � S��w�e� deg�g�� � k � �� deg�g�� � k


�d� a� � S�
w�o� k is even� g� � S�

w�e� g� � S�
w�e� deg�g�� � deg�g�� � k


�� h� � Sh� a� is even�
�a� a� � S�

h�e� k is odd� g� � S�
w�e� g� � S��h�o� deg�g�� � k � �� deg�g�� � k


�b� a� � S�
w�e� k is odd� g� � S�

h�e� g� � S��h�o� deg�g�� � deg�g�� � k

�c� a� � S�

h�e� k is even� g� � S�
h�e� g� � S��w�o� deg�g�� � k � �� deg�g�� � k


�d� a� � S�
w�e� k is even� g� � S�

w�e� g� � S�
w�o� deg�g�� � deg�g�� � k


For the cases 	d� and �b� we have k � 	 unknown parameters and for others cases
we have k � � parameters� Obviously for all cases the left�hand parts of ���� � �	�� are
�anti�symmetric�

First we show that there exist polynomials g� and g�� satisfying equations ���� � �	�� at
points of the set R� As it usually is in the case of a root �z of multiplicity �k� we require that
the left�hand parts of ���� � �	�� are divisible by �z � z��k�

Equations ���� � �	�� give us ��k homogeneous linear equations for k�� or k�	 unknown
coe�tients of polynomials g� and g�� We shall prove that at most k of them are linearly
independent� The proof of this fact we conduct in � steps� Three of these steps are based
on the following lemma�

��



Lemma �� Let a��z�� a��z�� a��z�� a��z�� b��z�� b��z� c��z�� c��z� be Laurent polynomials�
ja��z��j� � ja��z��j� �� �� l is a positive integer� If

a��z�b��z� � a��z�b��z� � �z � z��
lc��z�� �		�

a��z�a��z�� a��z�a��z� � �z � z��
lc��z�� �	��

then we have

a��z�b��z� � a��z�b��z� � �z � z��
lc�z�� �	��

where c�z� � L�
Proof� Let us assume for de�niteness that a��z�� �� �� We express b� from �		� and a� from
�	��� Using the obtained representations� we have

a��z�b��z� � a��z�b��z� �

a��z�
�z � z��lc��z�� a��z�b��z�

a��z�
� b��z�

�z � z��lc��z� � a��z�a��z�

a��z�
�

�z � z��
la��z�c��z� � b��z�c��z�

a��z�
�� �z � z��

lc�z��

In the �rst step we prove that for every �z � R only one equation of the pairs f����� ����g
and f����� �	��g should be retained� Indeed� on the one hand
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�kc��z�� c��z� � L�

on the other hand� since a��z�a����z� � ��b�z�b���z�� a���z�� �� � for any �z � R� Hence� the
last matrix at point �z has at least one non�zero element� We assume for de�niteness that the
�rst row contains non�zero element� Then by Lemma �� if g� and g� at the point �z satisfy
���� with multiplicity �k� then they also satisfy ���� at least with the same multiplicity� So
at the point �z we can exclude equation ���� from consideration� In the same manner we
eliminate one of equations ���� and �	���

In the second step we reject equations� corresponding to the roots �z and ���z� Now for
two roots �z and ���z we have ��k equations� It turns out that at most 	�k of them are linearly
independent� We show that we can keep only equations of the form ���� and ����� Indeed�
let us assume that in the previous step we kept equation ���� for �z � R and equation ����
for ���z� Now we prove that linear equations generated by ���� for ���z can be omitted� We
apply the change of variable z �� ��z to ����� Then the left�hand part of ���� becomes

a����z
��h�����z�g��z

��� zh����z�g��z��� �	��
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Since
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where b���z� � b�z��b��z�� is divisible by �z � �z�
�k� expression �	�� is also divisible by �z � �z�

�k

and the left�hand part of ���� is divisible by �z � ���z�
�k�

Dependence of the equations� generated by �	��� is obtained by the same reasons� Indeed�
after transform z �� ��z the left�hand part of �	�� is equal to

a����z
��h������z�g��z

�� � zh���z�g��z
���
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then the left�hand part of �	�� is divisible by �z � ���z�
�k�

In the third step we prove that equations� corresponding �z and ��z� are linear dependent�
Let us assume that we have chosen equation ���� for the both roots ��z� After substitution

z �� �z the right�hand part of ���� is transformed to
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is divisible by �z � �z�
�k� then the equations for ��z are linear dependent of the equations for

�z�
In the case� when we take equation ���� for �z and equation ���� for ��z� the corresponding

linear equations coincide�
Finally� we note that because the left�hand parts of ���� � �	�� belong to S� the linear

equations for �z� ���z � R coincide�
Thus� we have proved the existence of a pair of polynomials g�� g� � Ln� satisfying

equations ���� � �	�� on all of R� Although the polynomial b��z��b����z�� can have complex
roots� it is easy to check that we can choose polynomials g�� g� with real coe�cients� Indeed� if
z� is a root of b��z��b����z��� then �z� is also a root� Coe�cients of the equations� corresponding
these roots� di�er in complex conjugation� So instead of them we can consider real equations�
corresponding to real and imagine parts of the initial equations�

�	



Thus� we have k homogeneous linear equation for k �� or k�	 unknown values� Let us
take any non�degenerate solution of the system� Now we prove that the corresponding pair
of polynomials g� and g� of degree at most k� satisfying ���� � �	�� and the relation

g����� � g����� � b�
�
���� �	��

satis�es also the equation

g��z�g����z� � g��z�g����z� � b��z�b����z�� �	��

Indeed� let us assume for de�niteness that �z � R and jh������z�j� � ja�z��h��z�j� �� �� By
����� we have
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Thus� by Lemma � and from ����� the expression g��z�g����z� � g��z�g����z� is divisible by

�z � �z�
�k� It means that polynomials in the left�hand and right�hand parts of �	�� have 	k

common zeros� It remains to normalize the left�hand polynomial according to �	��� The
normalization is impossible only in the case when g���� � g���� � �� However� it implies
that the left�hand part of �	�� has 	k � � zeros� It follows from this that g��z�g����z� �
g��z�g����z� � �� Hence� g��z� � g��z� � �� It contradicts to the assumption that at least
one of the polynomials g� and g� is non�degenerate�

��� Proof of Corollary �

Indeed� for interpolatory symbols we have

h��z� � ��	 �
NX
n��

an�z
��n�� � z�n��� �� ��	 � �h��z��

a��z�a����z� � �����	��h��z��
�����	��h��z��

� � 	���	��h��z�����	��h��z�� � 	h��z�h���z��
The functions h��z� and h���z� have distinct roots� Hence� by Theorem �� we have to �nd
those interpolatory symbols which have roots of even multiplicity� Such polynomials have to
be non�negative� Otherwise� they have roots of odd multiplicity on the circle jzj � �� Thus�
by Riesz lemma� h��z� � p�z�p���z�� where p � S� On the other hand� h��z� � h���z� � ��
It implies the equality p�z�p���z� � p��z�p����z� � �� which is valid �see ��� Chapter ��
only for p�z� � zM �� � z�N����	� M�N �Z�

� Examples

In this section we discribe all possible re�nable functions of the class S with degrees of their
symbols up to �� satisfying criterion for the existence of 	 �anti�symmetric framelets and

��



give examples of their symbols and graphs� Besides� we construct 	 framelets corresponding
to the B�spline B�� The degree of its symbol is equal to ��

The case deg�h�� � � corresponds to the Haar wavelets� It gives an example of an
orthonormal basis with symmetry�

��� The case deg�h�� � �

This case is also trivial� A�Ron and Z�Shen �� presented the construction of 	 framelets
associated with the piecewise linear B�spline B� with the symbol h��z� � z���� � ��	 � z��
�see Fig� ��� The symbols of framelets can be represented in the form h��z� � �z���� �
��	 � z�� and h��z� � �z�� � z��	

p
	� Easily to see that this is a unique example of

a re�nable function for which the unitary extension principle is applicable� Indeed� let
h��z� � �z�� � 	 � �z� On the one hand� 	� � 	 � �� On the other hand� by Theorem B�
we have h����� � h������ � �� Hence� h����� � � that implies 	 � 	� � �� Hence� 	 � ��	�
� � ����

Fig� �� degh�� � �

��� The case deg�h�� � �

As we know at the moment only one example of a re�nable function� admiting 	 framelets
is known for this case� C�Chui and W�He �� have done it for the B�spline B�� h��z� �
z���������z����z���� Then the framelets are de�ned by the symbols h��z� �

p
����z����

h��z� � �z�� � � � �z � z���� �see Fig����
An arbitrary symbol h��z� � Sh of degree �� satisfying the condition h���� � �� can be

represented in the form

h��z� � �z�� � 	 � 	z � �z�� �� 	 � ��	� �	��

We prove that such symbols� admit constructing 	 antisymmetric framelets if and only if
� � �� 	 � ��

It follows from �	�� that

h�z� � �� h��z�h����z�� h���z�h�����z� � ���	z�� � �� � ���� � 	��� ��	z� �

� ��	z�� � ��	 � ��	z� � ���	z���z� � ��� � ��	�z � ��z����z � z��

��



Hence� h�z� is positive for jzj � �� if and and only if ab � �� If � � �� 	 � ��	 we the Haar
wavelets� If � � ��	� 	 � � we have a tight frame with a unique framelet� All other choice
of positive parameters leads to a framelet system with two antisymmetric framelets with

h��z� � ��z�� � 	 � 	z � �z�� h��z� � 	
p
�	��� � z�

Several examples of graphs of such re�nable functions and framelets are illustrated by Figures
	���

Fig� �� degh�� � �� � � ���	

Fig� �� degh�� � �� � � ��� piecewise quadratic splines�

Fig� �� degh�� � �� � � ���	

��



Fig� �� degh�� � �� � � ��� piecewise linear splines�

Fig� �� degh�� � �� � � ���	

��� The case deg�h�� � �

For this case an arbitrary admissible symbol h� has the form

h��z� � ��z�� � ��	�z�� � ���� � 	�� � ��	�z�� � �z�� � �� ��

Thus�

h�z� �

� 	��z�� � ���� � 	�� ����z�� � ��	�� � �� � ���� � ���� � 	� � ����z� � 	��z� �

�z � ��z����z � z��	��z�� � ���� � 	� � ���� � 	��z�� �	��

On the one hand� the last factor in �	�� has to have roots of even degree� On the other
hand� if z� is its root� then �z� and �z�� are also its roots� It means that only ��� �i are
permissible roots� It follows from this that ��� � 	� � ��� � ����� However� the positive
sign in this relatoin leads to the negative function h�z�� So we have just two solutions

���� �
���p	

�

with the correspondig framelet symbols

h��z� � ���	�z�� � ���� ��	�z� h��z� � �iz
�� � ��	�z�� � ��	�z � �iz

���

Figures � and � show plots of basic framelets�

��



Fig� �� degh�� � �� � � �������	�

Fig� �� degh�� � �� � � ��������	�

��� The case deg�h�� � 	

Here we consider symbols� satisfying the relation

h��z� � �z�� � 	z�� � 
 � 
z � 	z�� � �z��

where �� 	 � 
 � ��	� � �� ��
We have

h�z� �

� ��	z�� � ��� � 	�
z�� � �� � ���� � 	� � 
���� ��� � 	�
z� � ��	z� �

�z � ��z����z � z����	z�� � ��	�	 � �
 � 	
� � ��	z��� ����

Thus� the parameters have to satisfy either

��	 � �
�� � 	� � ��	 ����

or

��	 � �
�� � 	� � ���	� ��	�

First consider equation ����� It is reduced to the relation 
��� 	� � � that implies two
possibilities� �a� � � 	 � �� 
 � ��	
 �b� � � 	 � ��	� 
 � �� Solution �a� is not valid
because in this case � and 	 have di�erent signs that leads to the negative polinomial h�z�

��



�for jzj � ��� Solution �b� is valid when � � �� 	 � �� Every such a pair of the parameters
gives two odd framelets� Their symbols can be written in the form

h��z� � 	
p
�	��� z�� h��z� � ��z�� � z�� � 	�z�� � z���

Figures ���� shows several examples of their plots�

Fig� 	� degh�� � �� � � ���

Fig� �
� degh�� � �� � � ����

Fig� ��� degh�� � �� � � ���

Now we consider equation ��	�� Let �x 
� then 	 � ��	��� 
� We substitute 	 to ��	�
and solve it with respect to �� Then

���� �
� � 	
 �p� � 	


�



	��� �
�� 	
 �p�� 	


�
�

��



Hence� 
 � ��	� We consider four cases �a� 
 � ��	
 �b� � � 
 � ��	
 �c� 
 � �
 �d� 
 � ��
The case �a� corresponds to the Haar wavelets� In the case �b� we have two framelets of

di�erent evenness� The case �c� is well�known� It gives one framelet� The case �d� is invalid�
because it leads to the negative h�

We give examples for � sets of parameters�
�� � � ��������� 	 � ���������� 
 � ������ �see Fig� �	��

h��z� � ���	������z�� � z�� � ��	������z�� � z�� � ���		����� � z�


h��z� � ��	������z�� � z��� ��	������z�� � z��


Fig� ��� degh�� � �� � � �����	��� � � ������	��� � � �����

	� � � ��������	� 	 � �������	� 
 � ������ �see Fig� ����

h��z� � ����������z�� � z�� � ��	������z�� � z�� � �������	�� � z�


h��z� � ���������z�� � z��� ���������z�� � z��


Fig� ��� degh�� � �� � � ���������� � � ���	����� � � �����

�� � � ���������� 	 � ��������� 
 � ��	�� �see Fig� ����

h��z� � ���������z�� � z�� � ���������z�� � z��� ��	��� � z�


h��z� � �����		��z�� � z��� ���	�����z�� � z��


��



Fig� ��� degh�� � �� � � ���������� � � ��������� � � ����

��� B�spline B	

We give here symbols of framelets generated by the B�spline B� with the symbol

h��z� � z��
�
� � z

	

�	

�

Symbols of framelets are de�ned by the relations

h��z� � ����������z�� � z��� ���������z�� � z�� � z� � z�� � ����	����� � z�


h��z� � ����������z�� � z�� � ��	�������z�� � z�� � ��	�������� � z��

Their plots are presented by Figure ���

Fig� ��� degh�� � �� The framelets associated with the spline B�
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